Wiener index of generalized stars and their quadratic line graphs

نویسندگان

  • Andrey A. Dobrynin
  • Leonid S. Melnikov
چکیده

The Wiener index, W , is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of ∆ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W (S) = W (L(L(S)) exist only for 4 ≤ ∆ ≤ 6. Infinite families of generalized stars with this property are constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener index of generalized 4-stars and of their quadratic line graphs

We construct several infinite families of trees which have a unique branching vertex of degree 4 and whose Wiener index equals the Wiener index of their quadratic line graph. This solves an open problem of Dobrynin and Mel’nikov.

متن کامل

On the Wiener Index of Some Edge Deleted Graphs

The sum of distances between all the pairs of vertices in a connected graph is known as the {it Wiener index} of the graph. In this paper, we obtain the Wiener index of edge complements of stars, complete subgraphs and cycles in $K_n$.

متن کامل

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

On the edge reverse Wiener indices of TUC4C8(S) nanotubes

The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006